US009064216B2

a2z United States Patent (10) Patent No.: US 9,064,216 B2
Reddy et al. (45) Date of Patent: Jun. 23, 2015
(54) IDENTIFYING LIKELY FAULTY HO4L 1226 (2006.01)
COMPONENTS IN A DISTRIBUTED SYSTEM HO4L 1224 (2006.01)
. . (52) US.CL
(71) Applicant: Juniper Networks, Inc., Sunnyvale, CA CPC oo, GOG6N 99/005 (2013.01); HO4L 43/04
Us) (2013.01); HO4L 41/147 (2013.01); HO4L
(72) Inventors: Rajeshekar Reddy, San Jose, CA (US); . . . 41/0631 (2013.01)
Harshad Bhaskar Nakil, San Jose, CA (58) Field of Classification Search
(US) USPC ittt s 706/12
See application file for complete search history.
(73) Assignee: Juniper Networks, Inc., Sunnyvale, CA
(US) (56) References Cited
(*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS
patent is extended or adjusted under 35 7.184.437 Bl 22007 Cole et al.
U.S.C. 154(b) by 286 days. 8,018,801 B2* 9/2011 Reddyetal. ... 370/320
(21) Appl. No.: 13/842,909 (Continued)
OTHER PUBLICATIONS
(22) Filed: Mar. 15,2013
On converged multidomain management of connectivity in hetero-
(65) Prior Publication Data geneous networks, Derakhshan, F. ; Grob-Lipski, H. ; Rossler, H. ;
Schefezik, P. ; Soellner, M. Future Network & Mobile Summit
US 2013/0332399 Al Dec. 12, 2013 (FutureNetw), 2012 Publication Year: 2012, pp. 1-9.*
Related U.S. Application Data (Continued)
(60) Provisional application No. 61/729,474, filed on Nov. . . .
23, 2012, provisional application No. 61/723,684, Primary Examiner — Mlcl.lael B Holmes .
filed on Nov. 7, 2012, provisional application No. (74) Attorney, Agent, or Firm — Shumaker & Sieffert, P.A.
61/723,685, filed on Nov. 7, 2012, provisional
application No. 61/722,696, filed on Nov. 5, 2012, 7 ABSTRACT
provisional application No. 61/721,979, filed on Now. In general, techniques are described for automatically iden-
2, 2012, provisional application No. 61/721,994, filed tifying likely faulty components in massively distributed
on Nov. 2, 2012, provisional application No. complex systems. In some examples, snapshots of compo-
61/718,633, filed on Oct. 25, 2012, provisional nent parameters are automatically repeatedly fed to a pre-
application No. 61/656,468, filed on Jun. 6, 2012, trained classifier and the classifier indicates whether each
provisional application No. 61/656,469, filed on Jun. received snapshot is likely to belong to a fault and failure class
6, 2012, provisional application No. 61/656,471, filed or to a non-fault/failure class. Components whose snapshots
on Jun. 6, 2012. indicate a high likelihood of fault or failure are investigated,
restarted or taken off line as a pre-emptive measure. The
(51) Int.CL techniques may be applied in a massively distributed complex
GO6F 17/00 (2006.01) system such as a data center.
GO6N 5/02 (2006.01)
GO6N 99/00 (2010.01) 20 Claims, 11 Drawing Sheets

1
CUSTOMERS)}~

ADMINISTRATOR
2%

VIRTUAL
NETWORK
CONTROLLER |
2

SERVICE PROVIDER NETWORK
3

Paa
FHAP
SERVER
%

SERVER
124

US 9,064,216 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,122,127 B2 *
8,295,172 B1* 10/2012 Singlaetal. .
8,369,211 B2* 2/2013 Agarwal et al. .
8,442,064 B2* 5/2013 Singlaetal. .
8,705,353 B1* 4/2014 Reddyetal. .
8,750,288 B2* 6/2014 Nakiletal. ..
8,755,377 B2* 6/2014 Nakiletal. ..
8,797,897 B1* 82014 Bhattetal.
8,953,441 B2* 2/2015 Nakiletal. 370/228
8,958,285 B2* 2/2015 Agarwal et al ... 370/221
8,959,185 B2* 2/2015 Nakiletal. 709/219
2010/0057649 Al 3/2010 Lee et al.

OTHER PUBLICATIONS

2/2012 Bhattetal. ... 709/224
. 370/230.1
... 370/221
... 370/422
... 370/230
... 370/351
.... 370/360
.. 370/252

Predictive analytics: Assessing failure rate accuracy & failure mode
completeness, Bukowski, J.V. ; Goble, W.M. Reliability and Main-
tainability Symposium (RAMS), 2013 Proceedings—Annual DOIL:
10.1109/RAMS.2013.6517619 Publication Year: 2013 , pp. 1-7.*

A pragmatic approach to predict hardware failures in storage systems
using MPP database and big data technologies, Kumar, R. ;
Vijayakumar, S. ; Ahamed, S.A. Advance Computing Conference
(IACC), 2014 IEEE International DOI: 10.1109/IAdCC.2014.
6779422 Publication Year: 2014 , pp. 779-788.*

Soldered joints on leaded components: development of a design tool
to predict failure during temperature cycle tests, Wolbert, PM.M. ;
Brombacher, A.C. Reliability of Electron Devices, Failure Physics
and Analysis, 1996. Proceedings of the 7th European Symposium on
DOI: 10.1109/ESREF.1996.888217 Publication Year: 1996 , pp.
1791-1797 *

Extended European Search Report from corresponding European
Application No. 13170817 .4, dated Oct. 8, 2013, 9 pp.

“Amazon CloudWatch Developer Guide API Version Aug. 1, 2010,”
Amazon Web Services LLC, 2011, 106 pp.

Handigol et al., “Aster*x: Load-Balancing Web Traffic over Wide-
Area Networks,” 9th GENI Engineering Conference (GEC9), Nov. 2,
2010, 3 pp.

U.S. Appl. No. 13/724,975 by Santosh Kumar Dornal, filed Dec. 21,
2012.

* cited by examiner

U.S. Patent Jun. 23, 2015 Sheet 1 of 11

US 9,064,216 B2

11
CUSTOMERS

’/8

SERVICE PROVIDER NETWORK
7

’/10

DATA CENTER

IP FABRIC

20
CHASSIS
SWITCHES
ADMINISTRATOR 18
24
P4
VIRTUAL TOR TOR > 14
NETWORK |-~ . SWITCH PR SWITCH
CONTROLLER [~ 16A 16N
22 .. ' SUBNET K \ SUBNET ,
A ‘\‘.. > >~ - 1 —_ ~ N -~ 7
4 s N, T ~~__ 1 __- -
p1obd LN
e _/
IF-MAP
SERVER SERVER SERVER
2 12 eoe 12X

FIG. 1

U.S. Patent

Jun. 23, 2015 Sheet 2 of 11 US 9,064,216 B2
26
VIRTUAL NETWORK |~ 22 R IFMAP SERVER | 10
CONTROLLER == ¥
< ot
iP FABRIC
20
o
CHASSIS CHASSIS CHASSIS
SWITCH SWITCH ooe SWITCH
18A 18B 18M
14< \ u [
; iv
TOR SWITCH TOR SWITCH TOR SWITCH
16A 168 eoe 16N
{ } { } { i
\O. SUBNET1 _~ . SUBNET2 _-° “~_ SUBNET3 .’
SR S RN - -
) |
39+ ~12A v v 128 vy —12X
Y '
VN AGENT 37
N SERVER 1| | SERVER 2 SERVER X
— 31
HYPERVISOR 30A N VN
"""""""""""""""""""""""""""""""""" VIRTUAL AGENT AGENT
Y y SWITCH 358 35X
NFTo NFT4 Mg
32 32 VIRTUAL VIRTUAL
SWITCH SWITCH
Ao e 308 30X
{ VNGO | {VN1!
N /,/" S J
/ \ VM VM
[\ a0
VMO VM1 | | VM2
36 36 36
FIG. 2

US 9,064,216 B2

U.S. Patent Jun. 23, 2015 Sheet 3 of 11
/ 50
CH
PROCESSOR o
54A T
|
I
RT TABLE
56A
10.10.11.0/24
-LINK 60B
10.10.10.0/24
-LINK GOA
e L.
PROCESSOR TOR PROCESSOR TOR
54B 58A 4 968
| I
[[
RT TABLE RT TABLE
56B 56C
10.10.10.1/32 10.10.11.1/32
-LINK 62A -LINK 62D
10.10.10.2/32 10.10.11.2/32
»LINK 62B —LINK 62C
/ AN
62A // N 62C
628 . N 62D
Ve ~
~ ~
SUBNET-1 pYad ~_ SUBNET-2,
rd

—— pu——

T T T 710.10.11.0124

10.10.10.0/24 10.10.10.1 10.10.11.1

SERVER
50A

SERVER
10.10.10.2 50B 10.10.11.2

FIG. 3

U.S. Patent Jun. 23,2015 Sheet 4 of 11 US 9,064,216 B2

{ VIRTUAL NETWORK CONTROLLER

122 g
’ VNC NODE VNC NODE
80A 80N |
S DISTRIBUTED DATABASE .
82A ' 5
. ° §
. ° ;
L ® 5
DISTRIBUTED DATABASE g
82K :
00
ROUTING INFORMATION ROUTING INFORMATION
BASE BASE g
84A BN e

FIG. 4

U.S. Patent Jun. 23,2015 Sheet 5 of 11 US 9,064,216 B2
| VIRTUALNETWORK CONTROLLER
100 130 ;
VNC GLOBAL i
5 ORCHESTRATION ul LOAD BALANCING | | APPLICATIONS E
= 132 134 138 :
! 136 ;
; 142A>ﬁ\<142N
VNC NODE VNC NODE
: 102A / \ 102N g
ANALYTICS VM ANALYTICS VM §
3 104A 104N E
; 146A ~ 140 - 146N |
P &
; anayTicsos Yl | | | [ANALYTICSDB g
i 106A 106N ;
CONFIGURATION VM CONFIGURATION VM
3 108A 108N =
S CONFIG.DE 1\ [T i CONFIG. DB REEE
§ 1104 110N 3
T 1HR TN
CONTROL PLANE VM CONTROL PLANE VM
s 1124 12N |
§ NW DISC. NW DISC
: 13! i H
| (1147 ' BGP o0 114N BGP 5
XMPP 1187 XMPP 1N §
§ 1164 116N g
— |
S I L ' '

vy

SERVER
170

VN SWITCH
AGENT
172

VM
174

NETWORK
160

FIG.5

US 9,064,216 B2

Sheet 6 of 11

Jun. 23, 2015

U.S. Patent

e V9 'Ol
® ANAYBuOBW leRMA L e e e e e -
A 50z 4 |
. |
D { LAY | ALQZ |
961 (TWA) aurep feniiA A\\\\\\\V . (LANSNA _
Qm—. « e — — — — — — -
/ u UdAN " ZdAN “LhAN
(s8)5S8201d QIGISIA 193]
o
* (HAIA) BuIyDBW [BNIIA
z61/ AoTT 022~ a0z (X60e
7 (AS) MH YAAYIS TVIISAHd T T T T T T M i exdin zxd®n xn
_ A
(@)
- 49 «« « « « « «
! _
| | |
I “ /
_ _ o_mou \ x \
L _ e ¥ ¥ ¥
| |
_ “ Y ® (HAA) duydRi fenip
]
“ L_ _H_ _H_ v I/ suyoepy tenp
06l t] I
_ I
| _ SIA 61T M UdAn ZdAN LdAN
“ _ 181 , b\\ (5875589014 9|gISIA 185
! A] -912
_ Iz ._ (1AIA) uyoepy [N
/ p—
| 8lz X0TZ \-g1z
! | (XS) MH ¥3A¥3S TVIISAHd
_ T
_
_
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx [N 00Z

US 9,064,216 B2

Sheet 7 of 11

Jun. 23, 2015

U.S. Patent

000 “nA HINA
08¢
ANV Id SOILLATYNY
. . . Nam_)_\/ Em§> . . . Nao_2> Eu_2>
05¢ [74
ANV1d NOLLVHNOIANOD dNV1d TOHLNOD

AL(C |

\xmoN

[
|
« ’ _
_
_
C .
® 4 4 4
” NZI2INOY A
6€T . ‘/’ ZN_2>
D V / ® ®
d °®
ZINA
“ - FI9INOYA
Lz o :) 152 e P
: CE27 YOSIAYIJAH —J
S1Z
Z012
(ZS) MH ¥IAMIS TVYIISAHd

[FUNURR U RSO U VU PURU UGS UUU VU U SN U U U UGS USSR VU U SO SN SN SO)

US 9,064,216 B2

Sheet 8 of 11

Jun. 23, 2015

U.S. Patent

L Old
642
(1Y%
¥IIHISSVID
F19VNIVAL
,
iz
_ ST T T T T T T
! !
| |
v _
Z _ ”
_ nZ
86T _ ® e
| 6€T ® Ya NZATA
| [
_ V . ® ®
000 |“nn M _ hd ®
_ _ 6l ZIBINOYA ®
74 _ =
INIONT SOLLATYNY | WA
, ISINOHA
eve— . [— r4
\ «081 1T > TEe T
oRigvd 8127 ZeZyosinuadAH —J
000 |“n O di IVOISAHd | o/ SIT
F1avIvA /" ¥

(4114
ANIONT SNOLLVINDIANOD-3Y

:cow\‘

(ZS) MH ¥3IAH3S TVIISAH

U.S. Patent Jun. 23,2015 Sheet 9 of 11 US 9,064,216 B2

300

TRAINING PHASE /
310

COLLECT/RECEIVE SNAPSHOT DATA FROM RESPECTIVE 311
COMPONENTS WITHIN THE DISTRIBUTED SYSTEM -

v .

ROUTE THE SNAPSHOT DATA & CLASSIFICATION FLAGS
OF RESPECTIVE COMPONENTS TO CORRESPONDING
TRAINABLE CLASSIFIERS (SVM’S) FOR THAT TIER OR |—315

PLANE WHILE CLASSIFIER IS IN TRAINING MODE

v

4

PREDICTION PHASE
320

COLLECT/RECEIVE SNAPSHOT DATA FROM RESPECTIVE
COMPONENTS WITHIN THE DISTRIBUTED SYSTEM

v

ROUTE THE SNAPSHOT DATA (WITH OR WITHOUT
CLASSIFICATION FLAGS) OF RESPECTIVE COMPONENTS |~ 325
TO CORRESPONDING TRAINED CLASSIFIERS (SVM'S) FOR
THAT TIER OR PLANE WHILE CLASSIFIER IS IN
CLASSIFYING MODE

v
A l
IF CLASS FLAG PRESENT, IS > No| SWITCH CLASSIFIER

INTO RETRAINING
"
< PREDICTION CORRECT" MODE

k331 k332

321

REPEAT CONFIDENCE | _54c
BUILD PHASE | YES

v /—335

NO IS CONFIDENCE IN CLASSIFIER
PREDICTIONS SUFFICIENTLY LARGE DUE
TO MANY CORRECT PREDICTIONS?

A 4

IF PREDICTION INDICATES LIKELY FAULT
OR FAILURE, TAKE APPROPRIATE ACTION
(e.g., GENERATE ALARM)

YES
337

FIG. 8A

U.S. Patent Jun. 23,2015 Sheet 10 of 11 US 9,064,216 B2

WAIT PREDETERMINED AMOUNT —341
OF TIME

v (343

YES DID FAULT/FAILURE PREDICTION NO
TURN OUT TO BE CORRECT WITHIN

PREDETERMINED AMOUNT OF TIME?

FIG. 8B

U.S. Patent Jun. 23, 2015 Sheet 11 of 11 US 9,064,216 B2
COMPUTING DEVICE
401
PROCESSOR(S)
400
COMMUNICATION UNIT(S)
402
INPUT DEVICE(S)
404 <
OUTPUT DEVICE(S)
406
e
COMM. CHANNEL(S)
416
\ 4
STORAGE DEVICE(S)
408
OPERATING SYSTEM
410

VIRTUALIZATION
MODULE
412

ANALYTICS ENGINE
418

APPLICATION(S)
414A-414N

FIG. 9

US 9,064,216 B2

1
IDENTIFYING LIKELY FAULTY
COMPONENTS IN A DISTRIBUTED SYSTEM

PRIORITY CLAIM

This application claims the benefit of U.S. Provisional
Application No. 61/729,474, filed Nov. 23, 2012, U.S. Pro-
visional Application No. 61/723,684, filed Nov. 7,2012; U.S.
Provisional Application No. 61/723,685, filed Nov. 7, 2012;
U.S. Provisional Application No. 61/722,696, filed Nov. 5,
2012; U.S. Provisional Application No. 61/721,979, filed
Now. 2, 2012; U.S. Provisional Application No. 61/721,994,
filed Nov. 2, 2012; U.S. Provisional Application No. 61/718,
633, filed Oct. 25, 2012; U.S. Provisional Application No.
61/656,468, filed Jun. 6, 2012; U.S. Provisional Application
No. 61/656,469, filed Jun. 6, 2012; and U.S. Provisional
Application No. 61/656,471, filed Jun. 6, 2012, the entire
content of each of which being incorporated herein by refer-
ence.

TECHNICAL FIELD

Techniques of this disclosure relate generally to computer
networks, and more particularly to fault detection in com-
puter networks.

BACKGROUND

In a typical cloud data center environment, there is a large
collection of interconnected servers that provide computing
and/or storage capacity to run various applications. For
example, a data center may comprise a facility that hosts
applications and services for subscribers, i.e., customers of
data center. The data center may, for example, host all of the
infrastructure equipment, such as networking and storage
systems, redundant power supplies, and environmental con-
trols. In a typical data center, clusters of storage systems and
application servers are interconnected via high-speed switch
fabric provided by one or more tiers of physical network
switches and routers. More sophisticated data centers provide
infrastructure spread throughout the world with subscriber
support equipment located in various physical hosting facili-
ties.

Within a data center or other massively distributed com-
plex system, faults and failures are not equivalent. Faults may
allow for the continued operation of components of the sys-
tem that rely on the faulted component. However, faults may
develop into and tend to indicate pending failure of one or
more components of the system, which deleteriously affects
the operation of the system.

SUMMARY

In general, techniques are described for automatically
identifying likely faulty components in massively distributed
complex systems. In some examples, snapshots of compo-
nent parameters are automatically repeatedly fed to a pre-
trained classifier and the classifier indicates whether each
received snapshot is likely to belong to a fault and failure class
or to a non-fault/failure class. Components whose snapshots
indicate a high likelihood of fault or failure are investigated,
restarted or taken off line as a pre-emptive measure. The
techniques may be applied ina massively distributed complex
system such as a data center.

In some examples, a method of predicting component fail-
ure comprises receiving, by a communication protocol and
with a virtual network controller that includes an analytics

20

25

30

40

45

50

55

2

plane to analyze operations of a plurality of components in
one or more virtual networks, a first parameter set from each
of the components, wherein a parameter set from a compo-
nent includes one or more quantitative parameters that each
describes a state of the component. The method also com-
prises receiving, by the communication protocol and with the
virtual network controller, an indication of detected compo-
nent failure for one or more of the components. The method
also comprises training, with the virtual network controller
and using the first parameter sets and the indication of
detected component failure, a trainable automated classifier
to develop a classifying structure that distinguishes between
component parameter sets that logically associate with a
detected component failure and component parameter sets
that do not logically associate with a detected component
failure. The method also comprises receiving, by the commu-
nication protocol and with the virtual network controller, a
second parameter set from each of the components. The
method further comprises predicting, with the virtual net-
work controller using the trainable automated classifier and
the classitying structure, a failure of a first one of the compo-
nents.

In some examples, a method for identifying likely faulty
components in a massively distributed system comprises:

(a) subdividing the system into a plurality of tiers;

(b) for each respective tier, identifying respective quanti-
tative parameters of respective components of the respective
tier whose quantitative values are likely to act as indicators of
component failure;

(c) for each respective tier, automatically repeatedly cap-
turing sample snapshots of the identified respective quantita-
tive parameters of the tier components;

(d) for each respective tier, automatically repeatedly
detecting component failures;

(e) for each respective detected component failure, logi-
cally associating the detected component failure with one or
more of the respective captured parameter snapshots that
immediately preceded the respective component failure;

() automatically repeatedly training a trainable automated
classifier to develop a classifying structure that distinguishes
between first component parameter sets that logically associ-
ate with a detected failure and second component parameter
sets that do not logically associate with a detected failure;

(g) after said training, placing the trained classifier in a
prediction mode wherein the trained classifier is automati-
cally repeatedly fed with the automatically repeatedly cap-
tured sample snapshots and wherein the trained classifier uses
its developed classifying structure to classify the in-predic-
tion-mode sample snapshots as correlating to likely failure or
as correlating to likely non-failure;

(h) investigating those of the in-prediction-mode sample
snapshots that were correlated to failure as being likely to be
fault-indicating parameter sets; and

(1) taking preemptive measures for those of the respective
tier components that were determined to be more highly
likely to enter a failure mode based on the in-prediction-mode
indication that the corresponding sample snapshots correlate
to failure.

In some examples, a virtual network controller comprises
an analytics plane, a control plane, and one or more proces-
sors configured to execute the analytics plane to analyze
operations of a plurality of components in one or more virtual
networks, wherein the control plane receives, by a commu-
nication protocol, a first parameter set from each of the com-
ponents, wherein a parameter set from a component includes
one or more quantitative parameters that each describe a state
of the component, wherein the control plane receives, by the

US 9,064,216 B2

3

communication protocol, an indication of detected compo-
nent failure for one or more of the components, and wherein
the control plane provides the first parameter sets and the
indication of detected component failure to the analytics
plane. The virtual network controller also comprises a train-
able automated classifier, wherein the analytics plane trains,
using the first parameter sets and the indication of detected
component failure, the trainable automated classifier to
develop a classifying structure that distinguishes between
first component parameter sets that logically associate with a
detected component failure and second component parameter
sets that do not logically associate with a detected component
failure, wherein the control plane receives, by the communi-
cation protocol, a second parameter set from each of the
components and provides the second parameter sets to the
analytics plane, and wherein the analytics plane predicts,
using the trainable automated classifier and the classitying
structure, a failure of a first one of the components.

In some examples, a non-transitory computer-readable
medium comprises instructions that, when executed, cause
one or more programmable processors to receive, by a com-
munication protocol and with a virtual network controller that
includes an analytics plane to analyze operations of a plural-
ity of components in one or more virtual networks, a first
parameter set from each of the components, wherein a param-
eter set from a component includes one or more quantitative
parameters that each describes a state of the component. The
instructions also cause the processor(s) to receive, by the
communication protocol and with the virtual network con-
troller, an indication of detected component failure for one or
more of the components. The instructions also cause the
processor(s) to train, with the virtual network controller and
using the first parameter sets and the indication of detected
component failure, a trainable automated classifier to develop
a classifying structure that distinguishes between component
parameter sets that logically associate with a detected com-
ponent failure and component parameter sets that do not
logically associate with a detected component failure. The
instructions also cause the processor(s) to receive, by the
communication protocol and with the virtual network con-
troller, a second parameter set from each of the components.
The instructions also cause the processor(s) to predict, with
the virtual network controller using the trainable automated
classifier and the classifying structure, a failure of a first one
of the components.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example data
center in which examples of the techniques described herein
may be implemented.

FIG. 2 is a block diagram illustrating in further detail an
example system in which the techniques described herein
may be implemented.

FIG. 3 is another block diagram illustrating an example
system illustrating example configuration of chassis switch
and top-of-rack (TOR) switches as described herein.

FIG. 4 is a block diagram illustrating an example imple-
mentation of a virtual network controller for facilitating
operation of one or more virtual networks in accordance with
one or more embodiments of this disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 is a block diagram illustrating an example imple-
mentation of a virtual network controller for facilitating
operation of one or more virtual networks in accordance with
one or more embodiments of this disclosure.

FIG. 6A is a block diagram of a massively distributed
complex system in which identifying likely faulty compo-
nents may be carried out according to techniques described in
this disclosure.

FIG. 6B is a block diagram showing further details of a
virtualizing subsystem in which identifying likely faulty
components may be carried out according to techniques
described in this disclosure.

FIG. 7 is a schematic and signal flow diagram illustrating
how a trainable classifier is used to heuristically develop a
classification algorithm for predicting the likelihood of com-
ponent fault and/or failure according to techniques described
herein.

FIGS. 8A-8B depict a flow chart for an example mode of
operation of a system according to techniques described
herein.

FIG. 9 is a block diagram illustrating an example comput-
ing device for performing operations in accordance with one
or more aspects of the present disclosure.

Like reference characters denote like elements throughout
the figures and text.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating an example network
8 having a data center 10 in which examples of the techniques
described herein may be implemented. In general, data center
10 provides an operating environment for applications and
services for customers 11 coupled to the data center by ser-
vice provider network 7. Data center 5 may, for example, host
infrastructure equipment, such as networking and storage
systems, redundant power supplies, and environmental con-
trols. Service provider network 7 may be coupled to one or
more networks administered by other providers, and may thus
form part of a large-scale public network infrastructure, e.g.,
the Internet.

In some examples, data center 10 may represent one of
many geographically distributed network data centers. As
illustrated in the example of FIG. 1, data center 10 may be a
facility that provides network services for customers 11. Cus-
tomers 11 may be collective entities such as enterprises and
governments or individuals. For example, a network data
center may host web services for several enterprises and end
users. Other exemplary services may include data storage,
virtual private networks, traffic engineering, file service, data
mining, scientific- or super-computing, and so on. In some
embodiments, data center 10 may be individual network serv-
ers, network peers, or otherwise.

In this example, data center 5 includes set of storage sys-
tems and application servers 12A-12X (herein, “servers 12”)
interconnected via high-speed switch fabric 14 provided by
one or more tiers of physical network switches and routers.
Switch fabric 14 is provided by a set of interconnected top-
of-rack (TOR) switches 16A-16BN (“TOR switches” 16)
coupled to a distribution layer of chassis switches 18.
Although not shown, data center 10 may also include, for
example, one or more non-edge switches, routers, hubs, gate-
ways, security devices such as firewalls, intrusion detection,
and/or intrusion prevention devices, servers, computer termi-
nals, laptops, printers, databases, wireless mobile devices
such as cellular phones or personal digital assistants, wireless
access points, bridges, cable modems, application accelera-
tors, or other network devices.

US 9,064,216 B2

5

In this example, TOR switches 16 and chassis switches 18
provide servers 12 with redundant (multi-homed) connectiv-
ity to IP fabric 20 and service provider network 7. Chassis
switches 18 aggregates traffic flows and provides high-speed
connectivity between TOR switches 16. TOR switches 16A
and 16B may be network devices that provide layer 2 (MAC
address) and/or layer 3 (IP address) routing and/or switching
functionality. TOR switches 16 and chassis switches 18 may
each include one or more processors and a memory, and that
are capable of executing one or more software processes.
Chassis switches 18 are coupled to IP fabric 20, which per-
forms layer 3 routing to route network traffic between data
center 10 and customers 11 using service provider network 7.

Virtual network controller 22 (“VNC”) provides a logi-
cally centralized controller for facilitating operation of one or
more virtual networks within data center 10 in accordance
with one or more embodiments of this disclosure. In some
examples, virtual network controller 22 may operate in
response to configuration input received from network
administrator 24.

FIG. 2 is a block diagram illustrating an example imple-
mentation of data center 10 of FIG. 1 in further detail. In the
example of FIG. 2, data center 10 includes an overlay network
that extends switch fabric 14 from physical switches 16, 18 to
software switches 30A-30X (also referred to as a “virtual
switches). Virtual switches 30 dynamically create and man-
age one or more virtual networks 34 to be used by applica-
tions communicating with application instances. In one
example, virtual switches 30 execute the virtual network as an
overlay network, which provides the capability to decouple
an application’s virtual address from a physical address (e.g.,
1P address) of the one of servers 12A-12X (“servers 12”) on
which the application is executing. Each virtual network 34
may use its own addressing and security scheme and may be
viewed as orthogonal from the physical network and its
addressing scheme. For example, virtual switch 30A may
represent a virtual network switch implemented server 12A
(which may be an edge device positioned at an edge of the one
or more virtual networks) and may be configured to facilitate
overlay of a plurality of networks in the one or more virtual
networks using a layer 3 protocol, which is a network layer
protocol. Facilitating the network overlay using the layer 3
protocol may be substantially easier than using a layer 2
protocol. This may reduce an implementation cost of the one
or more virtual networks. Various techniques may be used to
transport packets within and across virtual network(s) 34 over
the physical network.

Each virtual switch 30 may execute within a hypervisor, a
host operating system or other component of each of servers
12. In some instances, any of virtual switches 30 may be
present in a campus access switch or Wi-Fi access point
(WAP). In the example of FIG. 2, virtual switch 30 executes
within hypervisor 31, also often referred to as a virtual
machine manager (VMM), which provides a virtualization
platform that allows multiple operating systems to concur-
rently run on one of host servers 12. In the example of F1G. 2,
virtual switch 30A manages virtual networks 34, each of
which provides a network environment for execution of one
or more virtual machines (VMs) 36 on top of the virtualiza-
tion platform provided by hypervisor 31. Each VM 36 is
associated with one of the virtual subnets VN0-VN2 managed
by the hypervisor 31.

In general, each VM 36 may be any type of software appli-
cation and may be assigned a virtual address for use within a
corresponding virtual network 34, where each of the virtual
networks may be a different virtual subnet provided by virtual
switch 30A. A VM 36 may be assigned its own virtual layer

10

15

20

25

30

35

40

45

50

55

60

65

6

three (L3) IP address, for example, for sending and receiving
communications but may be unaware of an IP address of the
physical server 12A on which the virtual machine is execut-
ing. In this way, a “virtual address” is an address for an
application that differs from the logical address for the under-
lying, physical computer system, i.e., server 12A in the
example of FIG. 2.

In one implementation, each of servers 12 includes a vir-
tual network agent (“VN agent”) 35A-35X (“VN agents 35”)
that controls the overlay of virtual networks 34 and that coor-
dinates the routing of data packets within server 12. In gen-
eral, each VN agent 35 communicates with virtual network
controller 22, which generates commands to control routing
of packets through data center 10. VN agents 35 may operate
as a proxy for control plane messages between virtual
machines 36 and virtual network controller 22. For example,
a VM 36 may request to send a message using its virtual
address via the VN agent 35A, and VN agent 35A may in turn
send the message and request that a response to the message
be received for the virtual address of the VM 36 that origi-
nated the first message. In some cases, a VM 36 may invoke
a procedure or function call presented by an application pro-
gramming interface of VN agent 35A, and the VN agent 35A
may handle encapsulation of the message as well, including
addressing.

In one example, network packets, e.g., layer three (L3) IP
packets or layer two (L.2) Ethernet packets generated or con-
sumed by the instances of applications executed by virtual
machines 36 within the virtual network domain may be
encapsulated in another packet (e.g., another IP or Ethernet
packet) that is transported by the physical network. The
packet transported in a virtual network may be referred to
herein as an “inner packet” while the physical network packet
may be referred to herein as an “outer packet.”” Encapsulation
and/or de-capsulation of virtual network packets within
physical network packets may be performed within virtual
switches 30, e.g., within the hypervisor or the host operating
system running on each of servers 12. As another example,
encapsulation and de-capsulation functions may be per-
formed at the edge of switch fabric 14 at a first-hop TOR
switch 16 that is one hop removed from the application
instance that originated the packet. This functionality is
referred to herein as tunneling and may be used within data
center to create one or more overlay networks. Other example
tunneling protocols may be used, including IP over GRE,
VXLAN, MPLS over GRE, etc.

As noted above, virtual network controller 22 provides a
logically centralized controller for facilitating operation of
one or more virtual networks within data center 10. Virtual
network controller 22 may, for example, maintain a routing
information base, e.g., on or more routing tables that store
routing information for the physical network as well as the
overlay network of data center 10. Similarly, switches 16, 18
and virtual switches 30 maintain routing information, such as
one or more routing and/or forwarding tables. In one example
implementation, virtual switch 30A of hypervisor 31 imple-
ments a network forwarding table (NFT) 32 for each virtual
network 34. In general, each NFT 32 stores forwarding infor-
mation for the corresponding virtual network 34 and identi-
fies where data packets are to be forwarded and whether the
packets are to be encapsulated in a tunneling protocol, such as
with one or more outer IP addresses.

The routing information may, for example, map packet key
information (e.g., destination IP information and other select
information from packet headers) to one or more specific next
hops within the networks provided by virtual switches 30 and
switch fabric 14. In some case, the next hops may be chained

US 9,064,216 B2

7

next hop that specify a set of operations to be performed on
each packet when forwarding the packet, such as may be used
for flooding next hops and multicasting replication. In some
cases, virtual network controller 22 maintains the routing
information in the form of a radix tree having leaf nodes that
represent destinations within the network. U.S. Pat. No.
7,184,437 provides details on an exemplary embodiment of a
router that utilizes a radix tree for route resolution, the con-
tents of U.S. Pat. No. 7,184,437 being incorporated herein by
reference in its entirety.

As shown in FIG. 2, each virtual network 34 provides a
communication framework for encapsulated packet commu-
nications 37 for the overlay network established through
switch fabric 14. In this way, network packets associated with
any of virtual machines 36 may be transported as encapsu-
lated packet communications 37 via the overlay network. In
addition, in the example of FIG. 2, each virtual switch 30
includes a default network forwarding table NFT,, and pro-
vides a default route that allows packet to be forwarded to
virtual subnet VN0 without encapsulation, i.e., non-encapsu-
lated packet communications 39 per the routing rules of the
physical network of data center 10. In this way, subnet VN0
and virtual default network forwarding table NFT, provide a
mechanism for bypassing the overlay network and sending
non-encapsulated packet communications 39 to switch fabric
14.

Moreover, virtual network controller 22 and virtual
switches 30 may communicate using virtual subnet VNO in
accordance with default network forwarding table NFT,, dur-
ing discovery and initialization of the overlay network, and
during conditions where a failed link has temporarily halted
communication via the overlay network. Once connectivity
with the virtual network controller 22 is established, the vir-
tual network controller 22 updates its local routing table to
take into account new information about any failed links and
directs virtual switches 30 to update their local network for-
warding tables 32. For example, virtual network controller 22
may output commands to virtual network agents 35 to update
one or more NFTs 32 to direct virtual switches 30 to change
the tunneling encapsulation so as to re-route communications
within the overlay network, for example to avoid a failed link.

When link failure is detected, a virtual network agent 35
local to the failed link (e.g., VN Agent 35A) may immediately
change the encapsulation of network packet to redirect traffic
within the overlay network and notifies virtual network con-
troller 22 of the routing change. In turn, virtual network
controller 22 updates its routing information any may issues
messages to other virtual network agents 35 to update local
routing information stored by the virtual network agents
within network forwarding tables 32.

FIG. 3 is ablock diagram illustrating an example system 50
illustrating example configuration of routing information
within chassis switch and TOR switches as described herein.
System 50 of FIG. 3 may, for example, correspond to portions
of data center 10 illustrated in FIGS. 1 and 2.

In this example, chassis switch 52 (“CH 52”), which may
be any of chassis switches 18 of FIG. 1, is coupled to Top of
Rack (TOR) switches 58A-58B (“TORs 58”) by chassis link
60A and chassis link 60B, respectively (“chassis links 60”).
TORs 58 may, in some examples, be any of TORs 16 of FIG.
1. In the example of FIG. 3, TORs 58 are also coupled to
servers 50A-50B (“servers 50”) by TOR links 62A-62D
(“TOR links 62”). Servers 50 may be any of servers 210 (FIG.
1). Here, servers 50 communicate with both TORs 58, and can
physically reside in either associated rack. TORs 58 each
communicate with a number of network switches, including
chassis switch 18A.

10

15

20

25

30

35

40

45

50

55

60

65

8

Chassis switch 52 has a processor 54A in communication
with an interface for communication with a network as
shown, as well as a bus that connects a memory (not shown)
to processor 54A. The memory may store a number of soft-
ware modules. These modules include software that controls
network routing, such as an Open Shortest Path First (OSPF)
module (not shown) containing instructions for operating the
chassis switch 18A in compliance with the OSPF protocol.
Chassis switch 52 maintains routing table (“RT table”) 56 A
containing routing information for packets, which describes a
topology of a network. Routing table 56A may be, for
example, a table of packet destination Internet protocol (IP)
addresses and the corresponding next hop, e.g., expressed as
a link to a network component.

TORs 58 each have a respective processor 54B, 54C, an
interface in communication with chassis switch 18A, and a
memory (not shown). Each memory contains software mod-
ules including an OSPF module and routing table 56B, 56C as
described above.

TORs 58 and chassis switch 52 may exchange routing
information specifying available routes, such as by using a
link-state routing protocol such as OSPF or IS-IS. TORs 58
may be configured as owners of different routing subnets. For
example, TOR 58A is configured as the owner of Subnet 1,
which is the subnet 10.10.10.0/24 in the example of FIG. 2,
and TOR 58B is configured as the owner of Subnet 2, which
is the subnet 10.10.11.0/24 in the example of FIG. 2. As
owners of their respective Subnets, TORs 58 locally store the
individual routes for their subnets and need not broadcast all
route advertisements up to chassis switch 52. Instead, in
general TORs 58 will only advertise their subnet addresses to
chassis switch 52.

Chassis switch 52 maintains a routing table (“RT table™)
56A, which includes routes expressed as subnets reachable by
TORs 58, based on route advertisements received from TORs
58. In the example of FIG. 2, RT table 56A stores routes
indicating that traffic destined for addresses within the subnet
10.10.11.0/24 can be forwarded on link 60B to TOR 58B, and
traffic destined for addresses within the subnet 10.10.10.0/24
can be forwarded on link 60A to TOR 58A.

In typical operation, chassis switch 52 receives Internet
Protocol (IP) packets through its network interface, reads the
packets’ destination IP address, looks up these addresses on
routing table 56 A to determine the corresponding destination
component, and forwards the packets accordingly. For
example, if the destination IP address of a received packet is
10.10.10.0, i.e., the address of the subnet of TOR 58A, the
routing table of chassis switch 52 indicates that the packet is
to be sent to TOR 58A via link 60A, and chassis switch 52
transmits the packet accordingly, ultimately for forwarding to
a specific one of the servers 50.

Similarly, each of TORs 58 receives Internet Protocol (IP)
packets through its network interface, reads the packets’ des-
tination [P address, looks up these addresses on its routing
table 56 to determine the corresponding destination compo-
nent, and forwards the packets according to the result of the
lookup.

FIG. 4 is a block diagram illustrating an example imple-
mentation of a virtual network controller 22 for facilitating
operation of one or more virtual networks in accordance with
one or more embodiments of this disclosure. Virtual network
controller 22 may, for example, correspond to virtual network
controller 22 of data center 10 of FIGS. 1 and 2.

Virtual network controller (VNC) 22 of FIG. 4 illustrates a
distributed implementation of a VNC that includes multiple
VNC nodes 80A-80N (collectively, “VNC nodes 80) to
execute the functionality of a data center VNC, including

US 9,064,216 B2

9

managing the operation of virtual switches for one or more
virtual networks implemented within the data center. Each of
VNC nodes 80 may represent a different server of the data
center, e.g., any of servers 12 of FIGS. 1-2, or alternatively, on
a server or controller coupled to the IP fabric by, e.g., an edge
router of a service provider network or a customer edge
device of the data center network. In some instances, some of
VNC nodes 80 may execute as separate virtual machines on
the same server.

Each of VNC nodes 80 may control a different, non-over-
lapping set of data center elements, such as servers, individual
virtual switches executing within servers, individual inter-
faces associated with virtual switches, chassis switches, TOR
switches, and/or communication links. VNC nodes 80 peer
with one another using peering links 86 to exchange infor-
mation for distributed databases, including distributed data-
bases 82A-82K (collectively, “distributed databases 82”°), and
routing information (e.g., routes) for routing information
bases 84A-84N (collectively, “RIBs 84”). Peering links 86
may represent peering links for a routing protocol, such as a
Border Gateway Protocol (BGP) implementation, or another
peering protocol by which VNC nodes 80 may coordinate to
share information according to a peering relationship.

VNC nodes 80 of VNC 22 include respective RIBs 84 each
having, e.g., one or more routing tables that store routing
information for the physical network and/or one or more
overlay networks of the data center controlled by VNC 22. In
some instances, one of RIBs 84, e.g., RIB 84 A, may store the
complete routing table for any of the virtual networks oper-
ating within the data center and controlled by the correspond-
ing VNC node 80 (e.g., VNC node 80A).

In general, distributed databases 82 define the configura-
tion or describe the operation of virtual networks by the data
center controlled by distributed VNC 22. For instance, dis-
tributes databases 82 may include databases that describe a
configuration of one or more virtual networks, the hardware/
software configurations and capabilities of data center serv-
ers, performance or diagnostic information for one or more
virtual networks and/or the underlying physical network, the
topology of the underlying physical network including
server/chassis switch/TOR switch interfaces and intercon-
necting links, and so on. Distributed databases 82 may each
be implemented using, e.g., a distributed hash table (DHT) to
provide a lookup service for key/value pairs of the distributed
database stored by different VNC nodes 22. Distributed data-
bases 82 may be implemented/stored using computer-read-
able media of or associated with VNC nodes 22.

FIG. 5 is a block diagram illustrating an example imple-
mentation of a virtual network controller 100 for facilitating
operation of one or more virtual networks in accordance with
one or more embodiments of this disclosure. Virtual network
controller 100 may, for example, correspond to virtual net-
work controller 22 of data center 10 of FIGS. 1 and 2 or virtual
network controller 22 of FIG. 4.

As illustrated in the example of FIG. 5, distributed virtual
network controller (VNC) 100 includes one or more virtual
network controller (“VNC”) nodes 102A-102N (collectively,
“VNC nodes 102”). Each of VNC nodes 102 may represent
any of VNC nodes 80 of virtual network controller 22 of FIG.
4. VNC nodes 102 that peer with one another according to a
peering protocol operating over network 160. Network 160
may represent an example instance of switch fabric 14 and/or
1P fabric 20 of FIG. 1. In the illustrated example, VNC nodes
102 peer with one another using a Border Gateway Protocol
(BGP) implementation, an example of a peering protocol. In
this sense, VNC nodes 102A and 102N may represent a first
controller node device and a second controller node device

20

25

30

40

45

10

peered using a peering protocol. VNC nodes 102 include
respective network discovery modules 114A-114N to dis-
cover network elements of network 160.

VNC nodes 102 provide, to one another using the peering
protocol, information related to respective elements of the
virtual network managed, at least in part, by the VNC nodes
102. For example, VNC node 102A may manage a first set of
one or more servers operating as virtual network switches for
the virtual network. VNC node 102A may send information
relating to the management or operation of the first set of
servers to VNC node 102N by BGP 118A. Other elements
managed by VNC nodes 102 may include network controllers
and/or appliances, network infrastructure devices (e.g., .2 or
L3 switches), communication links, firewalls, and VNC
nodes 102, for example. Because VNC nodes 102 have a peer
relationship, rather than a master-slave relationship, informa-
tion may be sufficiently easily shared between the VNC nodes
102. In addition, hardware and/or software of VNC nodes 102
may be sufficiently easily replaced, providing satisfactory
resource fungibility. Further, distributed VNC 100 may
enable may enable horizontally scalable configuration and
management, which may give a single system view of the one
or more virtual networks.

Each of VNC nodes 102 may include substantially similar/
analogous components for performing substantially similar/
analogous functionality, said functionality being described
hereinafter primarily with respect to VNC node 102A. VNC
node 102A may include an analytics database 106 A for stor-
ing diagnostic information related to a first set of elements
managed by VNC node 102A. Analytics database 106 A may
include a horizontally scalable network analytics database,
which may represent a fully integrated analytics collector
configured to troubleshoot, visualize, and analyze distributed
VNC 100 and the one or more virtual networks. VNC node
102 A may share at least some diagnostic information related
to VNC node 102A and/or one or more of the first set of
elements managed by VNC node 102A and stored in analytics
database 106, as well as receive at least some diagnostic
information related to any of the elements managed by others
of VNC nodes 102. Analytics database 106 A may represent a
distributed hash table (DHT), for instance, or any suitable
data structure for storing diagnostic information for network
elements in a distributed manner in cooperation with others of
VNC nodes 102. Analytics databases 106A-106N (collec-
tively, “analytics databases 106”) may represent, at least in
part, one of distributed databases 82 of distributed virtual
network controller 22 of FIG. 4.

VNC node 102A may include a configuration database
110A for storing configuration information related to a first
set of elements managed by VNC node 102A. Control plane
components of VNC node 102A may store configuration
information to configuration database 110A using interface
144 A, which may represent an Interface for Metadata Access
Points (IF-MAP) protocol implementation. VNC node 102A
may share at least some configuration information related to
one or more of the first set of elements managed by VNC node
102A and stored in configuration database 110A (including,
e.g., VNC node 102A), as well as to receive at least some
configuration information related to any of the elements man-
aged by others of VNC nodes 102. Configuration database
110A may represent a distributed hash table (DHT), for
instance, or any suitable data structure for storing configura-
tion information for network elements in a distributed manner
in cooperation with others of VNC nodes 102. Configuration
databases 110A-110N (collectively, “configuration databases
110”) may represent, at least in part, one of distributed data-
bases 82 of distributed virtual network controller 22 of FIG. 4.

US 9,064,216 B2

11

Configuration databases 110 may store respective RIBs 84 of
FIG. 4. Portions of RIBs 84 may be stored by control plane
VMs 112 to facilitate operation of network discovery mod-
ules 114 and BGPs 118.

Virtual network controller 100 may perform any one or
more of the illustrated virtual network controller operations
represented by modules 130, which may include orchestra-
tion 132, user interface 134, VNC global load balancing 136,
and one or more applications 138. VNC 100 executes orches-
tration module 132 to facilitate the operation of one or more
virtual networks in response to a dynamic demand environ-
ment by, e.g., spawning/removing virtual machines in data
center servers, adjusting computing capabilities, allocating
network storage resources, and modifying a virtual topology
connecting virtual switches of a virtual network. VNC global
load balancing 136 executed by VNC 100 supports load bal-
ancing of analytics, configuration, communication tasks, e.g.,
among VNC nodes 102. Applications 138 may represent one
or more network applications executed by VNC nodes 102 to,
e.g., change topology of physical and/or virtual networks, add
services, or affect packet forwarding. In some instances, a
centralized network management system or other controller
executes modules 130 and communicates using a northbound
interface of VNC nodes 102 to perform orchestration, con-
figure VNC nodes 102, perform VNC global load balancing,
and execute VNC nodes 102 with virtual network applica-
tions 138.

User interface 134 includes an interface usable to an
administrator (or software agent) to control the operation of
VNC nodes 102. For instance, user interface 134 may include
methods by which an administrator may modity, e.g. configu-
ration database 110A of VNC node 102A. Administration of
the one or more virtual networks operated by VNC 100 may
proceed by uniform user interface 134 that provides a single
point of administration, which may reduce an administration
cost of the one or more virtual networks.

VNC node 102A may include a control plane virtual
machine (VM) 112A that executes control plane protocols to
facilitate the distributed VNC techniques described herein.
Control plane VM 112A may in some instances represent a
native process. In the illustrated example, control VM 112A
executes BGP 118A to provide information related to the first
set of elements managed by VNC node 102A to, e.g., control
plane virtual machine 112N of VNC node 102N. Control
plane VM 112A may use an open standards based protocol
(e.g., BGP based L3VPN) to distribute information about its
virtual network(s) with other control plane instances and/or
other third party networking equipment(s). Given the peering
based model according to one or more aspects described
herein, different control plane instances (e.g., different
instances of control plane VMs 112A-112N) may execute
different software versions. In one or more aspects, e.g.,
control plane VM 112A may include a type of software of a
particular version, and the control plane VM 112N may
include a different version of the same type of software. The
peering configuration of the control node devices may enable
use of different software versions for the control plane VMs
112A-112N. The execution of multiple control plane VMs by
respective VNC nodes 102 may prevent the emergence of a
single point of failure.

Control plane VM 112A communicates with virtual net-
work switches, e.g., illustrated VM switch 174 executed by
server 170, using a communication protocol operating over
network 160. Virtual network switches facilitate overlay net-
works in the one or more virtual networks. In the illustrated
example, control plane VM 112A uses Extensible Messaging
and Presence Protocol (XMPP) 116 A to communicate with at

10

15

20

25

30

35

40

45

50

55

60

65

12

least virtual network switch 174 by XMPP interface 150A.
Virtual network route data, statistics collection, logs, and
configuration information may in accordance with XMPP
116A be sent as XML documents for communication
between control plane VM 112A and the virtual network
switches. Control plane VM 112A may in turn route data to
other XMPP servers (such as an analytics collector, e.g.,
analytics VM 104A) or may retrieve configuration informa-
tion on behalf of one or more virtual network switches. Con-
trol plane VM 112A may further execute a communication
interface 144 A for communicating with configuration virtual
machine (VM) 108A associated with configuration database
110A. Communication interface 144A may represent an IF-
MAP interface. Server 170 may represent an example
instance of any of servers 12 of FIGS. 1-2 or servers 50 of
FIG. 3, with virtual network switch 174 representing any of
virtual switches 30 and virtual network switch agent 172
representing any of virtual network agents 35 of FIG. 2, for
example.

VNC node 102A may further include configuration VM
108A to store configuration information for the first set of
element and manage configuration database 110A. Configu-
ration VM 108A, although described as a virtual machine,
may in some aspects represent a native process executing on
an operating system of VNC node 102A. Configuration VM
108A and control plane VM 112A may communicate using
IF-MAP by communication interface 144A and using XMPP
by communication interface 146A. In some aspects, configu-
ration VM 108A may include a horizontally scalable multi-
tenant IF-MAP server and a distributed hash table (DHT)-
based IF-MAP database represented by configuration
database 110A. In some aspects, configuration VM 108A
may include a configuration translator, which may translate a
user friendly higher-level virtual network configuration to a
standards based protocol configuration (e.g., a BGP L3VPN
configuration), which may be stored using configuration
database 110A. Communication interface 140 may include
an [F-MAP interface for communicating with other network
elements. The use of the IF-MAP may make the storage and
management of virtual network configurations very flexible
and extensible given that the [F-MAP schema can be dynami-
cally updated. Advantageously, aspects of virtual network
controller 100 may be flexible for new applications 138.

VNC node 102A may further include an analytics virtual
machine (VM) 104A to store diagnostic information (and/or
visibility information) related to at least the first set of ele-
ments managed by VNC node 102A. Control plane VM and
analytics VM 104 may communicate using an XMPP imple-
mentation by communication interface 146 A. Analytics VM
104 A, although described as a virtual machine, may in some
aspects represent a native process executing on an operating
system of VNC node 102A.

Analytics VM 104 A may include analytics database 106 A,
which may represent an instance of a distributed database that
stores visibility data for virtual networks, such as one of
distributed database 82 of distributed virtual network control-
ler 22 of FIG. 4. Visibility information may describe visibility
of both distributed VNC 100 and of customer networks. Ana-
Iytics database 106 A of analytics VM 104A may include an
XMPP interface on a first (southbound) side and a REST/
JASON/XMPP interface on a (northbound) second side by
communication interface 142A.

Virtual network switch 174 may implement the layer 3
forwarding and policy enforcement point for one or more end
points and/or one or more hosts. The one or more end points
or one and/or one or more hosts may be classified into a
virtual network due to configuration from control plane VM

US 9,064,216 B2

13
112A. Control plane VM 112A may also distribute virtual-
to-physical mapping for each end point to all other end points
as routes. These routes may give the next hop mapping virtual
IP to physical IP and encapsulation technique used (e.g., one
of IPinIP, NVGRE, VXLAN, etc.). Virtual network switch
174 may be agnostic to actual tunneling encapsulation used.
Virtual network switch 174 may also trap interesting layer 2
(L2) packets, broadcast packets, and/or implement proxy for
the packets, e.g. using one of Address Resolution Protocol
(ARP), Dynamic Host Configuration Protocol (DHCP),
Domain Name Service (DNS), multicast DNS (mDNS), etc.

In some cases, different VNC nodes 102 may be provided
by different suppliers. However, the peering configuration of
VNC nodes 102 may enable use of different hardware and/or
software provided by different suppliers for implementing the
VNC nodes 102 of distributed VNC 100. A system operating
according to the techniques described above may provide
logical view of network topology to end-hosts irrespective of
physical network topology, access type, and/or location. Dis-
tributed VNC 100 may provide programmatic ways for net-
work operators and/or applications to change topology, to
affect packet forwarding, and/or to add services, as well as
horizontal scaling of network services, e.g. firewall, without
changing the end-host view of the network.

FIG. 6A is a block diagram of a massively distributed
complex system 200, and more specifically, of a software
defined networking (SDN) system that operates according to
techniques described in this disclosure. System 200 may rep-
resent an example instance of network 8 of FIG. 1. That is,
system 200 may represent a cloud-implementing data center
environment in which there is provided a large collection of
network-interconnected servers (e.g., 210x, 210y) that pro-
vide compute and/or storage capacity to run many different
user and/or other kinds of application programs (e.g., user
visible process(es) 216). Such an environment tends to be
very dynamic from an applications point of view. System 200
may include level of automation that, at least to some extent,
insulates users from the infrastructure details and that avoids
need for manual intervention to interconnect the physical
servers to provide the compute or storage capacity required to
enable the various applications to execute to one level of
sufficiency or another.

In order to enable automation and agility of the infrastruc-
ture (e.g., the physical interconnect fabric 180), there is a
growing trend to deploy either an overlay networking solu-
tion or a virtualized networking system on top of physical
compute clusters where the overlay and/or virtualizing sub-
system encapsulates and automatically manages the details of
keeping the many physical network switches and routers
(e.g., 185, 187) and channels (e.g., 186) up and running at
desired bandwidths (BW) and desired qualities of service
(QoS) represented here by 110. Fabric 180 may represent an
example of fabric 14 of FIG. 1 and may include physical
telecom channels, routers, gates, etc.

In such an environment, a server (e.g., 210x) may run one
or more applications and/or guest operating systems. In order
to enable many guest operating systems (also called virtual
machines (VMs) 215) on a single server 210, there may be
usage of a virtual machines monitoring system commonly
known as hypervisor (such as ESX, Hyper-V, KVM, Xen,
etc.). Examples ofhypervisors are illustrated as hypervisor 31
of FIGS. 1 and 231 of FIG. 6B. A single application (e.g., user
visible process UVP1 216) executing on a VM 215 may
require many instances of compute and storage resources that
may be provided by the infrastructure as multiple individual
servers 210 or multiple virtual machines 215 running on one
or more servers 210. In order for the application to share

30

35

40

45

55

14

information amongst its distributed compute and storage
instances and with the outside world, a telecommunications
network 180 enables movement of this information as; for
example, packet conveyed data signals 217. Every time a new
application is instantiated and/or changed on the infrastruc-
ture, a respective virtual network (e.g., VNet 207v) may be
created and/or changed to support the new/changed applica-
tion and to allow all its compute and storage instances to share
information with one another and/or the outside world. Each
virtual network user 205, or VUser 205, may experience
his/her/its own Virtual Network (VNet) 207 with its respec-
tive resources and issues, etc.

In a virtualized or overlay network environment, the edge
of'the network is extended from the physical network element
(e.g., switch or a router 185) to a software switch (e.g.,
VRouter 232 shown in FIG. 6B) running inside the hypervi-
sor (231) or inside the host operating system on the physical
server (e.g., 210z) to provide a telecom virtualizing interface
(VTI) 220. VRouter 232 may represent an example instance
of software switches 30 of FIG. 2. The virtualized and/or
overlayed network that is used by the application to commu-
nicate with its instances is created dynamically and managed
by software switch controlling means (e.g., control plane
VMs 112 of FIG. 5 or control plane 240 of FIG. 6B) having its
own addressing and security scheme where the latter is
orthogonal from the physical network 180 and its addressing
scheme. There are many different methods that can be
employed to transport packets (e.g., 217) within and across
the virtual network(s) and over the physical network.

Network IP (and/or Ethernet) packets (e.g., 217) generated
or consumed by the instances of the application in the virtual
network domain may be encapsulated in another IP (and/or
Ethernet) packet that is transported by the physical network.
Herein, the virtual network packet will be referred to as inner
packet and the physical network packet will be referred to as
outer packet. The function of encapsulation and/or de-capsu-
lation of the virtual network packet within physical network
packet is done in the hypervisor 231 or the host O/S (not
shown) running on the server 210. In addition, the encapsu-
lation and de-capsulation function can also be performed at
the edge of the network in a first-hop physical network switch
router (e.g., 185).

Cloud data-center networks can constitute an example of a
massively distributed complex system because the number of
interconnected servers can be very large with each server
presenting one or more links, each having a respective 1 Gbps
or 10 Gbps or greater bandwidth link. In order to construct a
network that can interconnect all such links, operators gen-
erally use a number of switches (or routers) with N input
(ingress) linksxM output (egress) links. Each of these
individual switches can act as an IP router with its own IP
address(es).

Referring to some of the specifics shown in FIGS. 6 A-6B,
there can be a plurality of different kinds of components in
respective “tiers” or service planes of a virtualized overlay
system. One of these planes is the virtual-to-physical for-
warding plane 230. It includes the virtual network routers
(VNRouters, or more simply VRouters 232-239). These com-
ponents can reside in the respective hypervisors 231 of the
respective physical servers (e.g., 210) or they can reside in a
Top-of-Rack switch (not shown) which is typically included
in the virtual-to-physical forwarding plane 230. When the
VRouter is disposed in a hypervisor 231, it acts as a software
switch having both respective virtual ports connected to the
virtual machines (VMs) and physical ports corresponding to
the physical 1/O ports of the respective server 210. Each
VNRouter selectively routes/switches packets between its

US 9,064,216 B2

15

virtual ports and the physical ports and/or between its virtual
ports. The VNRouters may be considered as Data/Forwarding
Plane components of the Virtual Network System.

Another of the plural tiers or planes within system 200 is
referred to as the Control Plane 240 and it may contain a
plurality of virtual machines (VMcp-i) implementing respec-
tive Controllers or Controller Processes. Controllers may rep-
resent instances of control plane VMs 112 of FIG. 5 that
provide control functions within the Virtual Network System.
The Controllers each operatively couples to a respective set of
VNRouters and each distributes respective routing informa-
tion signals to its VNRouters. In one embodiment, the relative
scale of the Virtual Network System is on the order of 100s of
1000s of VNRouters (e.g., 232) and 100s of corresponding
Controllers (e.g., VNcpl).

Another of the plural tiers or planes within system 200 is
referred to as the Configuration Plane 250 and it may contain
a plurality of virtual machines (VMgp-k) implementing
respective Configuration Processes. Controllers may repre-
sent instances of configuration VMs 108 of FIG. 5 that pro-
vide control functions with respect to interconnect and/or
other configurations within the Virtual Network System. The
Configuration controllers each operatively couples to a
respective parts of the physical network (180) and/or to
respective parts of the Control Plane 250 and each distributes
respective configuration information signals to its controlled
counterparts.

Yet another of the plural tiers or planes within the system
200 is referred to as the Analytics plane 280. Components
(e.g., VMnl) within the Analytics plane 280 are typically
charged with automatically monitoring and/or automatically
collecting reported states of other parts of the Virtual Network
System. Components within the Analytics plane 280 may
represent instances of analytics VMs 104 of FIG. 5. The
Analytics components are tasked with gathering information
from all other components in the system so as to develop a
high-level view of what is occurring in the system as a whole.
This “Big Data” information may be stored in a persistent
database, e.g., analytics VM 106 of FIG. 5. This information
can then be used to show the current state of the system, to
help debug problems, to do historical or real-time analysis of
the system and so on.

Because of the highly scalable and variable nature of sys-
tem 200, it may be prone to many fault and failure modes.
However, an administrator(s) of system 200 seeks to provide
its users (e.g., 205x, 205y, 205w, 205z) with continuously
robust, reliable, high bandwidth, and high quality services. In
other words, the system 200 should be resilient and continue
to operate at near peak capability despite isolated failures in
various ones of its components. The various components that
desirably remain failure free and/or are configured to work
around known or expected failure modes include the different
kinds of components in the respective and different tiers or
planes, including the forwarding plane 230, the control plane
240, the configuration plane 250 and even the global analytics
plane 280.

To realize these goals, it would be useful to have an ability
to predict likely failures of particular components before the
failures actually happen and to responsively replace and/or
restart the likely-to-fail components and/or reconfigure inter-
connects around the likely-to-fail components before the lat-
ter actually fail. For instance, this prediction ability may
allow system operators to systematically bringing down cor-
responding parts of the system during off-peak hours and to
replace and/or fix the likely-to-fail components before actual
failure thus minimizing the impact of likely failures on the
overall system.

5

15

40

45

50

60

65

16

In accordance with the present disclosure, a method is
provided for identifying likely faulty components in a mas-
sively distributed complex system that includes one or more
of the following steps:

(a) subdividing the system into a plurality of tiers (e.g.,
230, 240, 250, 280) each characterized by having alike
components (e.g., VRouters) within that tier;

(b) for each respective tier, identifying respective quanti-
tative parameters (e.g., memory failures per unit time,
processor failures per unit time, channel failures per unit
time, packet resends and/or drops per unit time, etc.) of
respective components of the respective tier whose
quantitative values are likely to act as indicators of com-
ponent fault and/or failure in that respective tier;

(c) for each respective tier, automatically repeatedly cap-
turing sample snapshots of the identified respective
quantitative parameters of the tier component(s);

(d) for each respective tier, automatically repeatedly
detecting component failures (e.g., lost packets);

(e) for each respective detected component failure, logi-
cally associating the detected component failure with
one or more of the respective captured parameter snap-
shots that immediately preceded the respective compo-
nent failure;

() automatically repeatedly training a trainable automated
classifier to develop a classifying structure that distin-
guishes between first component parameter sets that
logically associate with one or more detected failures
and second component parameter sets that do not logi-
cally associate with the one or more detected failures;

(g) after said training, placing the trained classifier in a
prediction mode wherein the trained classifier is auto-
matically repeatedly fed with the more recent and auto-
matically repeatedly captured sample snapshots and
wherein the trained classifier uses its developed classi-
fying structure (e.g., class separation surface described
below) to classify the in-prediction-mode sample snap-
shots as correlating to failure or as correlating to non-
failure;

(h) investigating those of the in-prediction-mode sample
snapshots that were correlated to failure as being likely
to be fault-indicating parameter sets; and

(1) taking preemptive corrective and/or work-around mea-
sures for those of the respective tier components that
were determined to be more highly likely to enter a
failure mode based on the in-prediction-mode indication
that the corresponding sample snapshots correlate to
failure.

Also in accordance with techniques of this disclosure, a
massively distributed complex system is provided as having a
plurality of tiers and having a fault and/or failure predicting
mechanism, the predicting mechanism comprising one or
more of:

(a) a subdividing mechanism that subdivides the system
into a plurality of tiers each characterized by having
alike components;

(b) a parameters identifying mechanism that, for each
respective tier, identifies respective quantitative param-
eters of respective components of the respective tier
whose quantitative values are likely to act as indicators
of likely component fault and/or failure;

(c) a sampling mechanism that, for each respective tier,
automatically repeatedly captures sample snapshots of
the identified respective quantitative parameters of the
tier component(s);

US 9,064,216 B2

17

(d) a failure detecting mechanism that, for each respective
tier, automatically repeatedly detects component fail-
ures;

(e) a failure to parameters associating mechanism that, for
each respective detected component failure, logically
associates (e.g., flags) the detected component failure
with one or more of the respective captured parameter
snapshots that immediately preceded the respective
component failure;

(f) a training mechanism that automatically repeatedly
trains a trainable automated classifier to develop a clas-
sifying structure that distinguishes between first compo-
nent parameter sets that logically associate with a
detected failure and second component parameter sets
that do not logically associate with a detected failure;

(g) a predictions generating mechanism that, after said
training, places the trained classifier in a prediction
mode wherein the trained classifier is automatically
repeatedly fed with the automatically repeatedly cap-
tured sample snapshots and wherein the trained classi-
fier uses its developed classifying structure to classify
the in-prediction-mode sample snapshots as correlating
to likely failure or as correlating to likely non-failure;

(h) a likely fault and/or failure investigating mechanism
that follows up on those of the in-prediction-mode
sample snapshots that were correlated to failure as being
likely to be fault-indicating parameter sets; and

(1) an action taking mechanism that preemptively takes
corrective and/or work-around measures for those of the
respective tier components that were determined to be
more highly likely to enter a failure mode based on the
in-prediction-mode indication that the corresponding
sample snapshots correlate to failure.

There are various kinds of trainable automated classifiers
that can be trained to classify input data sets as belonging to
one ofa plurality of distinct (e.g., mutually exclusive) classes.
One example is neural nets. Another example is that of so-
called, Support Vector Machines (SVMs). These automated
machines include supervised learning models with associated
learning algorithms that analyze supplied sample data and
recognize patterns of distinction in the supplied data samples
(e.g., reference sets) and use the analysis for developing clas-
sification and regression analysis models. A basic SVM takes
in a first set of reference input data together with predeter-
mined classification for the first set of reference input data and
produces one or more classifying models for the supplied
reference input data. Then after such a learning mode, the
SVM takes in a second set of non-referenced input data (data
that generally does not come with predetermined classifica-
tion therefor) and it predicts, for each given one of the second
input data sets, which of two or more possible classes the
input data belongs to. In the case of the present disclosure of
invention, it is assumed that there are two mutually exclusive
classes, one being that of highly likely to fail (e.g., due to a
growing fault) and the second being that of not highly likely
to fail. Such an SVM can be viewed as being a non-probabi-
listic binary linear classifier. Given a set of training examples,
each marked as belonging to one of two categories, an SVM
training algorithm builds a model that subsequently (after
training) assigns new examples into one category (e.g., likely
to fail) or the other (e.g., not likely to fail).

FIG. 7 is a block diagram of an system 200" that includes,
for a respective one of its tiers (e.g., the VRouters tier), a
corresponding trainable classifier (e.g., SVM) 270 that is
coupled to automatically repeatedly (e.g., periodically)
receive parameter sets or “snapshots,” e.g., VR parameter
snapshots 271, indicative of corresponding operating modes

25

30

40

45

50

18

of'the components (e.g., the VRouters 232-239) that are being
watched for possible entry into a significant fault or highly
likely failure mode. More specifically, during a training mode
(signaled on line 275 signaling either training mode or pre-
diction mode for trainable classifier 270), each parameters
snapshot 271 is accompanied by a training-mode classifica-
tion signal 272 indicating whether the sample belongs to the
failure class or the non-failure class. In response to repeated
training sessions, the trainable classifier 270 develops an
internal algorithm (represented by classification separation
surface 295) that classifies subsequently received parameter
snapshots 271(12) as belonging to either the likely good class
(293 as measured down from the 100% likely bad plane to
surface 295) or the likely bad class (291 as measured up from
the 0% likely bad plane to surface 295), where the TH plane
can be disposed above troughs of surface 295 by Tolerance
amount TOL 294). This output 298 (e.g., a binary signal
indicating surface 295 is above or below the TH plane 292) is
coupled to a corresponding analytics engine 285 that deter-
mines what to do in response to the classification determina-
tion. On framework 290, spot 297 denotes a recent input spot
and spot 296 denotes a trained bad spot. The corresponding
analytics engine 285 may be coupled to a re-configuration
engine 255 that, in the case where a subsequently received
parameter snapshots 271(12) indicates likelihood of failure,
re-configures the system so as to try to avoid the failure.

In some examples, the Analytics plane includes analytics
engine 285 to collect respective snapshot data relevant to
likelihood of failure from various components within the
respective tiers and/or planes of the system. Respective snap-
shot data may include for example, parameters like CPU
utilization levels, memory utilization levels, alarm levels in
the various system parts, number of peers of a protocol ses-
sion, number of protocol sessions for a component, and so on.
These collected respective and likely to be relevant snapshots
271 could be early indicators of growing faults and/or upcom-
ing failures. The Analytics plane will also collect the failure
data of various components where the latter are training ref-
erence points. For instance, a connection failure to a compo-
nent and a subsequent reconnection with a restart data would
indicate to the Analytics plane that the respective component
has gone down (failed) and needed to be restarted or replaced.

Analytics plane may collect respective snapshot data from
various components using SDN techniques. Examples of
SDN techniques are described in SOFTWARE-DEFINED
MOBILE CORE, U.S. patent application Ser. No. 13/724,
975, filed Dec. 21, 2012, the contents of which being incor-
porated by reference herein. As described above with VNCs
22, 100, a distributed network controller may operate as a
control plane for at least some control plane functionality of
components, such as servers and chassis/TOR switches, and
receive snapshot data by a SDN communication protocol that
also transports control plane configuration information.
Examples of the SDN communication protocol include
XMPP, described for instance with respect to FIG. 5, and
OpenFlow.

While FIG. 7 shows, by way of example, the collecting of
snapshots from the VRouters tier 232-239 of a respective one
server 210z, it is to be understood that similar collections of
respectively relevant parameter snapshots and development
of classification surfaces 295 for each will be taking place for
other tiers and/or system planes and/or servers. It is to be
appreciated that the developed classification surfaces 295 of
each monitored component tier may not be accessible in
certain kinds of classifiers such as neural nets. As the above
input data samples 271, 272 are input as training and/or
prediction parameters to the respective SVM algorithms, the

US 9,064,216 B2

19

latter learn and/or indicate whether the respective component
falls in one of two categories—likely good 293 or likely
failing 291. The shape of the classification surface 295 may be
a function of a predetermined binary threshold level TH 292
and/or a partitioning (not shown) of the XY plane. The XYZ
framework 290 shown in FIG. 7 is for the sake of simple
illustration and other frameworks according to this disclosure
may have N-dimensional mappings with each axis (e.g., U, V,
X, Y, etc.) representing a respective one of the monitored
parameters. Part of learning is that of determining for each tier
those parameters that are best indicators of growing faults
and/or predictable failures. The trained classification algo-
rithm (e.g., one that uses classification surface 295) is after-
wards used to predict the likelihood of failure of the respec-
tive components on a continuous basis as the data is being
collected by the Analytics plane. The learning algorithms can
also be enhanced on a continuous basis by adding/changing
input parameters, thresholds, parameter space partitionings,
etc.

FIGS. 8 A-8B provide a flowchart of a process 300 that may
be carried out in the system of FIG. 7. Portion 310 corre-
sponds to the training mode/phase. Analytics engine 285
receives parameter snapshots data 271 for components of
system 200 (311). Analytics engine 285 provides parameter
snapshots data 271 and classification flags of respective com-
ponents, e.g., training-mode classification signal 272, to
trainable classifier 270 while trainable classifier 270 is in
training mode (315).

Portion 320 corresponds to the prediction mode. Analytics
engine 285 receives parameter snapshots data 271 for com-
ponents of system 200 (321). Analytics engine 285 provides
parameter snapshots data 271 and classification flags of
respective components, e.g., training-mode classification sig-
nal 272, to trainable classifier 270 while trainable classifier
270 is in classifying mode (325).

Portion 330 corresponds to a confidence building and
action mode. Upon a prediction, if a class flag is present and
the prediction is not correct (NO branch of 331), analytics
engine 285 may switch trainable classifier 270 to retraining
mode (332). If (YES branch of 331), if the confidence in
trainable classifier 270 prediction is not sufficiently large due
to many correct predictions (NO branch of 335), the analytics
engine 285 and trainable classifier 270 repeat the confidence
build phase (336). Otherwise (YES branch of 335), if the
prediction indicates likely fault or failure, then analytics
engine 285 takes appropriate action, which may include gen-
erating an alarm, sending a message to an administrator, etc.
(337). Analytics engine 285 then waits a predetermined
amount of time (341) to determine whether the fault/failure
prediction was correct within the time (343). If not (NO
branch of 343), analytics engine 285 may switch trainable
classifier 270 to retraining mode (332). If the prediction was
correct (YES branch of 343), the process moves to step 335.

FIG. 9 is a block diagram illustrating an example device
that participates in identifying likely faulty components
according to techniques described in this disclosure. FIG. 9
illustrates only one particular example of computing device
401, and many other examples of computing device 401 may
be used in other instances.

As shown in the specific example of FIG. 9, computing
device 401 includes one or more processors 400, one or more
communication units 402, one or more input devices 404, one
or more output devices 406, and one or more storage devices
408. Computing device 401, in the specific example of FIG. 9,
further includes operating system 410, virtualization module
412, and one or more applications 414A-414N (collectively
“applications 414”"). Each of components 400, 402, 404, 406,

10

15

20

25

30

35

40

45

50

55

60

65

20

and 408 may be interconnected (physically, communica-
tively, and/or operatively) for inter-component communica-
tions. As one example in FIG. 9, components 400, 402, 404,
406, and 408 may be coupled by one or more communication
channels 416. In some examples, communication channels
416 may include a system bus, network connection, interpro-
cess communication data structure, or any other channel for
communicating data. Virtualization module 412 and applica-
tions 414, as well as operating system 410 may also commu-
nicate information with one another as well as with other
components in computing device 401.

Processors 400, in one example, are configured to imple-
ment functionality and/or process instructions for execution
within computing device 401. For example, processors 400
may be capable of processing instructions stored in storage
devices 408. Examples of processors 400 may include, any
one or more of a microprocessor, a controller, a digital signal
processor (DSP), an application specific integrated circuit
(ASIC), a field-programmable gate array (FPGA), or equiva-
lent discrete or integrated logic circuitry.

One or more storage devices 408 may be configured to
store information within computing device 401 during opera-
tion. Storage devices 408, in some examples, are described as
a computer-readable storage medium. In some examples,
storage devices 408 are a temporary memory, meaning that a
primary purpose of storage devices 408 is not long-term
storage. Storage devices 408, in some examples, are
described as a volatile memory, meaning that storage devices
408 do not maintain stored contents when the computer is
turned off. Examples of volatile memories include random
access memories (RAM), dynamic random access memories
(DRAM), static random access memories (SRAM), and other
forms of volatile memories known in the art. In some
examples, storage devices 408 are used to store program
instructions for execution by processors 400. Storage devices
408, in one example, are used by software or applications
running on computing device 401 (e.g., operating system
410, virtualization module 412 and the like) to temporarily
store information during program execution.

Storage devices 408, in some examples, also include one or
more computer-readable storage media. Storage devices 408
may be configured to store larger amounts of information than
volatile memory. Storage devices 408 may further be config-
ured for long-term storage of information. In some examples,
storage devices 408 include non-volatile storage elements.
Examples of such non-volatile storage elements include mag-
netic hard discs, tape cartridges or cassettes, optical discs,
floppy discs, flash memories, or forms of electrically pro-
grammable memories (EPROM) or electrically erasable and
programmable memories (EEPROM).

Computing device 401, in some examples, also includes
one or more communication units 402. Computing device
401, in one example, utilizes communication units 402 to
communicate with external devices. Communication units
402 may communicate, in some examples, by sending data
packets over one or more networks, such as one or more
wireless networks, via inbound and outbound links. Commu-
nication units 402 may include one or more network interface
cards (IFCs), such as an Ethernet card, an optical transceiver,
aradio frequency transceiver, or any other type of device that
can send and receive information.

Computing device 401, in one example, also includes one
or more input devices 404. Input devices 404, in some
examples, are configured to receive input from a user through
tactile, audio, or video feedback. Examples of input devices
404 include a presence-sensitive display, a mouse, a key-
board, a voice responsive system, video camera, microphone

US 9,064,216 B2

21

or any other type of device for detecting a command from a
user. In some examples, a presence-sensitive display includes
a touch-sensitive screen.

One or more output devices 406 may also be included in
computing device 401. Output devices 406, in some
examples, are configured to provide output to a user using
tactile, audio, or video stimuli. Output devices 406, in one
example, include a presence-sensitive display, a sound card, a
video graphics adapter card, or any other type of device for
converting a signal into an appropriate form understandable
to humans or machines. Additional examples of output
devices 406 include a speaker, a cathode ray tube (CRT)
monitor, a liquid crystal display (LCD), or any other type of
device that can generate intelligible output to a user.

Computing device 401 may include operating system 412.
Operating system 412, in some examples, controls the opera-
tion of components of computing device 401. For example,
operating system 412, in one example, facilitates the commu-
nication of modules applications 414 with processors 400,
communication units 402, input devices 404, output devices
406, and storage devices 410. Applications 414 may each
include program instructions and/or data that are executable
by computing device 401. As one example, application 414A
may include instructions that cause computing device 401 to
perform one or more of the operations and actions described
in the present disclosure.

In accordance with techniques of the present disclosure,
computing device 401 may include an analytics engine 418
application to identify likely faulty components. Analytics
engine 418 may represent an example instance of analytics
engine 285. Analytics engine 418 may include a trainable
classifier that receives parameter snapshots indicative of cor-
responding operating modes of the components that are being
watched for possible entry into a significant fault or highly
likely failure mode. More specifically, during a training
mode, each parameters snapshot is accompanied by a train-
ing-mode classification signal indicating whether the sample
belongs to the failure class or the non-failure class. In
response to repeated training sessions, the trainable classifier
develops an internal algorithm that classifies subsequently
received parameter snapshots as belonging to either the likely
good class or the likely bad class, where the TH plane can be
disposed above troughs of surface by a tolerance amount.
Analytics engine 418 determines an appropriate response to
the classification determination. Computing device 401 may
be coupled to are-configuration engine that, in the case where
a subsequently received parameter snapshots indicates like-
lihood of failure, re-configures the system so as to try to avoid
the failure in response to direction or component fault indi-
cations from analytics engine 418.

The techniques described herein may be implemented in
hardware, software, firmware, or any combination thereof.
Various features described as modules, units or components
may be implemented together in an integrated logic device or
separately as discrete but interoperable logic devices or other
hardware devices. In some cases, various features of elec-
tronic circuitry may be implemented as one or more inte-
grated circuit devices, such as an integrated circuit chip or
chipset.

If implemented in hardware, this disclosure may be
directed to an apparatus such a processor or an integrated
circuit device, such as an integrated circuit chip or chipset.
Alternatively or additionally, if implemented in software or
firmware, the techniques may be realized at least in part by a
computer-readable data storage medium comprising instruc-
tions that, when executed, cause a processor to perform one or
more of the methods described above. For example, the com-

40

45

50

55

65

22

puter-readable data storage medium may store such instruc-
tions for execution by a processor.
A computer-readable medium may form part of a computer
program product, which may include packaging materials. A
computer-readable medium may comprise a computer data
storage medium such as random access memory (RAM),
read-only memory (ROM), non-volatile random access
memory (NVRAM), electrically erasable programmable
read-only memory (EEPROM), Flash memory, magnetic or
optical data storage media, and the like. In some examples, an
article of manufacture may comprise one or more computer-
readable storage media.
In some examples, the computer-readable storage media
may comprise non-transitory media. The term “non-transi-
tory” may indicate that the storage medium is not embodied in
a carrier wave or a propagated signal. In certain examples, a
non-transitory storage medium may store data that can, over
time, change (e.g., in RAM or cache).
The code or instructions may be software and/or firmware
executed by processing circuitry including one or more pro-
cessors, such as one or more digital signal processors (DSPs),
general purpose microprocessors, application-specific inte-
grated circuits (ASICs), field-programmable gate arrays (FP-
GAs), or other equivalent integrated or discrete logic cir-
cuitry. Accordingly, the term “processor,” as used herein may
refer to any of the foregoing structure or any other structure
suitable for implementation of the techniques described
herein. In addition, in some aspects, functionality described
in this disclosure may be provided within software modules
or hardware modules.
Various embodiments have been described. These and
other embodiments are within the scope of the following
examples.
What is claimed is:
1. A method of predicting component failure, the method
comprising:
receiving, by a communication protocol and with a virtual
network controller that includes an analytics plane to
analyze operations of a plurality of components in one or
more virtual networks, a first parameter set from each of
the components, wherein a parameter set from a com-
ponent includes one or more quantitative parameters that
each describes a state of the component;
receiving, by the communication protocol and with the
virtual network controller, an indication of detected
component failure for one or more of the components;

training, with the virtual network controller and using the
first parameter sets and the indication of detected com-
ponent failure, a trainable automated classifier to
develop a classifying structure that distinguishes
between component parameter sets that logically asso-
ciate with a detected component failure and component
parameter sets that do not logically associate with a
detected component failure;

receiving, by the communication protocol and with the

virtual network controller, a second parameter set from
each of the components; and

predicting, with the virtual network controller using the

trainable automated classifier and the classifying struc-
ture, a failure of a first one of the components.

2. The method of claim 1, wherein predicting a failure of a
first one of the components comprises classifying the second
parameter set for the first one of the components to a likely
bad class according to the classifying structure.

3. The method of claim 1,

wherein the classifying structure comprises one or more

classification separation surfaces, and

US 9,064,216 B2

23

wherein predicting a failure of a first one of the components
comprises classifying the second parameter set for the
first one of the components to a likely bad class accord-
ing to one of the classification separation surfaces.

4. The method of claim 3,

wherein the one of the classification separation surfaces is
associated with a tolerance amount, and

wherein classitying the second parameter set for the first
one of the components to a likely bad class comprises
determining the second parameter set exceeds the toler-
ance amount.

5. The method of claim 1,

wherein the trainable automated classifier comprises one
or more support vector machines, and

wherein training the trainable automated classifier com-
prises inputting the first parameter sets and the indica-
tion of detected component failure to the support vector
machines to produce the classifying structure.

6. The method of claim 1,

wherein the virtual network controller is a distributed vir-
tual network controller comprising a plurality of virtual
network controller nodes, and

wherein each of the virtual network controller nodes com-
prises an analytics virtual machine that exchanges at
least some analytics information to implement the ana-
Iytics plane.

7. The method of claim 1, wherein the plurality of compo-
nents includes virtual network elements that include one or
more of servers, top-of-rack (TOR) switches, or chassis
switches.

8. The method of claim 1, wherein the virtual network
controller uses a software-defined network protocol to
receive the first parameter set from each of the components.

9. The method of claim 1, wherein the components execute
one of a forwarding plane, control plane, or configuration
plane for the virtual networks.

10. A method for identifying likely faulty components in a
massively distributed system, the method comprising:

(a) subdividing the system into a plurality of tiers;

(b) for each respective tier, identifying respective quanti-
tative parameters of respective components of the
respective tier whose quantitative values are likely to act
as indicators of component failure;

(c) for each respective tier, automatically repeatedly cap-
turing sample snapshots of the identified respective
quantitative parameters of the tier components;

(d) for each respective tier, automatically repeatedly
detecting component failures;

(e) for each respective detected component failure, logi-
cally associating the detected component failure with
one or more of the respective captured parameter snap-
shots that immediately preceded the respective compo-
nent failure;

(f) automatically repeatedly training a trainable automated
classifier to develop a classifying structure that distin-
guishes between first component parameter sets that
logically associate with a detected failure and second
component parameter sets that do not logically associate
with a detected failure;

(g) after said training, placing the trained classifier in a
prediction mode wherein the trained classifier is auto-
matically repeatedly fed with the automatically repeat-
edly captured sample snapshots and wherein the trained
classifier uses its developed classifying structure to clas-
sify the in-prediction-mode sample snapshots as corre-
lating to likely failure or as correlating to likely non-
failure;

10

15

20

25

30

40

45

55

60

65

24

(h) investigating those of the in-prediction-mode sample
snapshots that were correlated to failure as being likely
to be fault-indicating parameter sets; and

(1) taking preemptive measures for those of the respective
tier components that were determined to be more highly
likely to enter a failure mode based on the in-prediction-
mode indication that the corresponding sample snap-
shots correlate to failure.

11. A virtual network controller comprising:

an analytics plane;

a control plane;

one or more processors configured to execute the analytics
plane to analyze operations of a plurality of components
in one or more virtual networks,

wherein the control plane receives, by a communication
protocol, a first parameter set from each of the compo-
nents, wherein a parameter set from a component
includes one or more quantitative parameters that each
describe a state of the component,

wherein the control plane receives, by the communication
protocol, an indication of detected component failure for
one or more of the components, and

wherein the control plane provides the first parameter sets
and the indication of detected component failure to the
analytics plane;

a trainable automated classifier,

wherein the analytics plane trains, using the first parameter
sets and the indication of detected component failure,
the trainable automated classifier to develop a classify-
ing structure that distinguishes between first component
parameter sets that logically associate with a detected
component failure and second component parameter
sets that do not logically associate with a detected com-
ponent failure,

wherein the control plane receives, by the communication
protocol, a second parameter set from each of the com-
ponents and provides the second parameter sets to the
analytics plane, and

wherein the analytics plane predicts, using the trainable
automated classifier and the classifying structure, a fail-
ure of a first one of the components.

12. The virtual network controller of claim 11, wherein
predicting a failure of a first one of the components comprises
classifying the second parameter set for the first one of the
components to a likely bad class according to the classifying
structure.

13. The virtual network controller of claim 11,

wherein the classifying structure comprises one or more
classification separation surfaces, and

wherein the analytics plane predicts the failure of a first one
of the components by classifying the second parameter
set for the first one of the components to a likely bad
class according to one of the classification separation
surfaces.

14. The virtual network controller of claim 13,

wherein the one of the classification separation surfaces is
associated with a tolerance amount, and

wherein classifying the second parameter set for the first
component to a likely bad class comprises determining
the second parameter set exceeds the tolerance amount.

15. The virtual network controller of claim 11,

wherein the trainable automated classifier comprises one
or more support vector machines, and

wherein the analytics plane trains the trainable automated
classifier by inputting the first parameter sets and the
indication of detected component failure to the support
vector machines to produce to the classifying structure.

US 9,064,216 B2

25

16. The virtual network controller of claim 11, further
comprising:

a plurality of virtual network controller nodes that imple-

ment a distributed virtual network controller,

wherein each of the virtual network controller nodes com-

prises an analytics virtual machine that exchange at least
some analytics information to implement the analytics
plane.

17. The virtual network controller of claim 11, wherein the
plurality of components include virtual network elements that
include one or more of servers, top-of-rack (TOR) switches,
or chassis switches.

18. The virtual network controller of claim 11, wherein the
virtual network controller uses a software-defined network
protocol to receive the first parameter set from each of the
components.

19. The virtual network controller of claim 11, wherein the
components execute one of a forwarding plane, control plane,
or configuration plane for the virtual networks.

20. A non-transitory computer-readable medium compris-
ing instructions that, when executed, cause one or more pro-
grammable processors to:

receive, by a communication protocol and with a virtual

network controller that includes an analytics plane to

10

15

20

26

analyze operations of a plurality of components in one or
more virtual networks, a first parameter set from each of
the components, wherein a parameter set from a com-
ponent includes one or more quantitative parameters that
each describes a state of the component;

receive, by the communication protocol and with the vir-
tual network controller, an indication of detected com-
ponent failure for one or more of the components;

train, with the virtual network controller and using the first
parameter sets and the indication of detected component
failure, a trainable automated classifier to develop a
classifying structure that distinguishes between compo-
nent parameter sets that logically associate with a
detected component failure and component parameter
sets that do not logically associate with a detected com-
ponent failure;

receive, by the communication protocol and with the vir-
tual network controller, a second parameter set from
each of the components; and

predict, with the virtual network controller using the train-
able automated classifier and the classifying structure, a
failure of a first one of the components.

#* #* #* #* #*

